AD=AD49 983 JAYCOR DEL MAR CALIF
JH STUHHILL!I
UNCLASSIFIED

F/6 20/4

F mzo-'n-c-ooao
AFOSR=TR=78=0062

MICAI. CALCULATION OF THE STABILITY OF PARALLEL FLOWS.(U)

| or |
—
DATE
mu:n







MUMERICAL CALCULATION OF THE
STABILITY OF PARALLEL FLOWSQ

I

3/

L

Final Report
Contract No. F49620-77-C-0030
December 5, 1977

Prepared By
James H. Stuhmiller

For

Space and Missile Systems Organization

Air Force Office of Scientific Research

JAYCOR; 1401 Camino DeL Mar (P.0, Box 370); DeL Mar, CA 92014

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)

(714) 453-5680

and the

D] UTION STATEMENT A

Approved for public release;
Distribution Unlimited

NOTICE OF TRANSMITTAL TO DDC

his technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).

Distribution is unlimited.
A. D. BLOSE
Technical Information Officer




CONTENTS

ABSTRACT .

LIST OF SYMBOLS

LIST OF FIGURES

INTRODUCTION

THE MATHEMATICAL FORMULATION .

THE NUMERICAL SOLUTION TECHNIQUE
COMPARISON WITH LINEAR STABILITY THEORY
FINITE AMPLITUDE EFFECTS

CONCLUDING REMARKS

ACKNOWLEDGEMENTS

1.
2.
3.
4.
5.
6.
7.
8.

REFERENCES

AGOESSION for____
| ACCESSION for _

NTIS

poc

UNANNOLUNTD

JUSTIFICATICN ooy

BY
DISTRIGETIC VAL TV
YA 7Y

A

R T RS ) SARR VIS TR, (o -1 yTRNE S AT



ABSTRACT

A numerical approach to solving the two-dimensional,
incompressible Navier-Stokes equations is presented
and is used to study the stability and evolution of
disturbances in a boundary layer. Previous numerical
approaches have used streamfunction-vorticity formu-
lations that take advantage of the special properties
of two-dimensional flow. The present method solves a
finite-difference form of the momentum equations and
may therefore be extended to three-dimensions more
readily. Computations using this technique are
compared with the result of linear stability theory
for small amplitude disturbances and are found to
give satisfactory agreement, while calculations at
large amplitude support the conjecture that non-
linear effects can be destabilizing.
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I index of right-most columns
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J index of top-most row
n index denoting time level
p,P fluid pressure divided by mass density
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u,U streamwise component of fluid velocity
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a dimensionless wavenumber (2m6/))
B dimensionless frequency of oscillation (2n6/U_T)
§ momentum thickness of boundary layer
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INTRODUCTION

One of the principal interactions between a fluid and a solid
structure is the tangental force due to relative motion. At
low velocities, when the flow is still laminar, the drag force
is small, but at higher speeds, when the flow has become
turbulent, the drag, as well as the heat transfer, increases
enormously. It is of practical interest to be able to under-
stand the mechanisms leading to the transition from a laminar
to turbulent flow and to be able to predict and control that
phenomena.

The onset of turbulence is preceeded by a motion in the boundary
layer that is certainly three-dimensional and probably highly
nonlinear. Any theory that would explain the transition process
must address these two issues in some manner. At its initial
stages, however, transition appears to involve fairly regular,
small amplitude, two-dimensional disturbances that are capable
of extracting energy from the mean flow and thereby grow
rapidly. This motion is within the power of analysis to
investigate as an eigenvalue problem and, consequently, it has
been extensively studied.

The extension of these results to true initial value problems,
large amplitudes, and three-dimensions has proven to be quite
difficult for analysis and so it is desirable to develop other
approaches to assist in understanding these effects. One
promising approach is the direct, numerical solution of the
governing equations. Encouraging results have already been
obtained by Fasel (1976) and Murdock (1977) using a stream-
function-vorticity formulation of the equations of motion.
Fasel employed a three-time-level finite-difference solution
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algorithm, while Murdock has combined an orthogonal function
expansion in one spatial direction with a finite-difference
formulation in the other. The two methods appear to give good
agreement with linear analysis and with one another.

T

The present work explores another numerical approach: the finite-
difference solution of the momentum form of the Navier-Stokes
equations. Three variables (two velocities and a pressure) must
now be calculated instead of two (a streamfunction and vorticity), |
however, the numerical technique is readily extended to three-
dimensions where the concept of a streamfunction is no longer
valid. The finite-difference algorithm used differs from that

of Fasel in two respects. The present scheme introduces no numer-
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ical viscosity into the solution, while Fasel's scheme is
slightly dissipative. Secondly, the present scheme requires
storing the flow information at only one time level, instead
of at two levels as in Fasel's approach. The consideration of

T

computer storage may be a critical one when three-dimensional
calculations are attempted. Both schemes involve systems of
nonlinear algebraic equations which must be solved iteratively.

The work presented here describes the details of the problem
formulation and numerical solution procedure as applied to
spatially periodic, parallel flows. Comparisons with the results
of linear analysis are made and verify the correctness of the
numerical solutions. Finally, the effects of large amplitude on
subcritical stability are investigated and indicate that non-
linear effects can be destabilizing.




2. THE MATHEMATICAL FORMULATION

The motion of the fluid is assumed to be described by the two-~
dimensional, incompressible, time-dependent Navier-Stokes
equations. Normalizing the spatial distances by the momentum
thickness of the boundary layer, §, the velocities by the free
stream value, U_, and time by §/U_, the equations of motion
become

B0, i, ou L 8p . Ao

HrtEEt Yyt 70 (1)

Y 4 4dY 4 OV 4 3p _ 1.2

ot ¥ Usx % Vay 5 oy Rv ¥ =)
%+g—;’=o. (3)

Here, x and u are the coordinate and velocity in the streamwise
direction, y and v are the coordinate and velocity in the
direction normal to the boundary, p is the fluid pressure divided
by the mass density, and R = U_6/v is the Reynolds number, where
v is the kinematic viscosity. The Laplacian operator is

2 2

- 3
ve = + 2
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It is convenient to define a base flow, denoted by capital
letters, that satisfies the steady flow equations

vdd + v3U 4 3B . LoZy (4)

X dy  9x R
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For high Reynolds number flows, these equations can be solved
either directly or by using boundary-layer/potential flow
techniques. Disturbances to the base flow then satisfy

%%; + U%%g 3 u’%g + u’%%g + V%g; + v’%% + v‘é%;
+ 327 = 192y~ (7)
el v wll v 0B+ VBT 4 vgp e & 3
+ %%1 = 1v3y- (8)
%“xl + 33‘;' 20 (9)

The boundary conditions appropriate to these equations are that
the disturbance quantities vanish far from the solid boundary,

R, T 0 88y £, (10) !

the disturbance velocities vanish on the solid boundary,

W =2y =0 at y=20, (11)

and, by evaluating (8) on the boundary and using (9), that




L= o2 at y=0. (12)

)
y 9xX9dy
Boundary conditions in the streamwise direction depend on the
nature of the problem being solved.

The techniques developed in this work are capable of solving

the disturbance equations for the most general base flows, but
here we shall consider the special case of parallel flow, when

U =U(y) and V = 0. Strictly speaking, the only such flow
satisfying this condition is the parabolic distribution. In the
thin boundary layers that form at high Reynolds numbers, however,
the normal velocity field is extremely small and the assumption
of parallel flow is nearly met (Schlichting, 1960, pl16ff). The
disturbance equations can then be simplified to the form

du” du” -au” .du “ou” . B8p— 1.2 .
W T aEss RN e Yy o R g = srun - (13)
v~ v~ ~9v” 2ov” gp” _ 1.2 .
3t + UTS? + u o + v 5y + 3y RV v (14)
ou”’ v’ _
5% + ;e o . (15)
The linearized form of equations (13) - (15) have been extensively

studied, especially the growth rates and spectral properties of
periodic disturbances. The assumptions of linearization and
periodicity allows the equations above to be transformed into

a single ordinary differential equation, the Orr-Sommerfeld
equation. The resulting body of knowledge, known as linear
stability theory (LST), offers a quantitative test of the direct
numerical solution of the equations.

The results discussed in this work are for parallel flows in
which U is taken as the horizontal component of the velocity
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ovaer a flat plate, the Blasius profile. In order to compare with

LST, the disturbance flow is assumed to be periodic with wave-
length A in the streamwise direction.

There are then two param-
eters describing small amplitude motion, the Reynolds number, R,
and the dimensionless wavenumber o = 2mé/A.
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3. THE NUMERICAL SOLUTION TECHNIQUE

The equations (13), (14), and (15) subject to boundary conditions

(10), (11), and (12) are to be solved in a region 0 < x < A/$

and 0 < y < », The region is first divided into finite sized

cells, of constant size in the horizontal and variably spaced }‘
in the vertical (see Figure 1). Within each cell, the horizontal £
velocity is defined at the center of the left face, the vertical
velocity at the center of the bottom face, and the pressure at
the cell center (see Figure 2).

The following finite-difference form was used to represent the
time rate of change of the discrete velocities
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Figure 1. A Typical Finite-Difference Mesh Configuration
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Here 5yj—5 = %(Gyj + 6yj_1). Also, we have dropped the prime
from the lower case quantities since no confusion with total
velocities or pressures can result. The difference form used
for the nonlinear terms is that of Piacsek and Williams (1970).

If I and J represent the total number of columns and rows used,
with columns i=1 and I and rows j=1 and J being boundary cells
outside the physical domain, then the boundary conditions

become
s 0 L T et TS SRR (18)
Lo s L T e R
- ey e (19)
Pij 1 P35 27 Rex Mi+1,2 i,2
LT S B R T R e o B B KES)
Up oy = Mgy v Wy Vi g e B S Byg g e KE)

The pressure field is determined so as to guarantee that
equation (15) is satisfied. Before discussing the details of
how the pressure is calculated, it is convenient to define the
tilda finite-difference operators

(L2 = (——z’m“) - - ) (22)
at’1,] at’i,j ~ 6x ‘Pi,j T Pi-1,j

2¥y = (——5\"’) -t ( ) (23)
Gtli,; = 3t4,; 5V 2o b S 0 D L
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that is, they are the time rate of change operators without the
pressure terms. The solutions are advanced in time by the time-
average, implicit algorithm

n¥l _ 0 . 1. [36,n 3y untt

B3 = 8 4 " B Bat)i,j * G5 (24)
where the superscript indicates the time level and 6t is the finite
time step. This scheme when used with central, space differencing
introduces no numerical dissipation (Roach, 1976, p.84). The
velocity fields are then given by the formulae

n
o RN 1 du,\n Ju St n+1 n+l
By g =Yy gt Zst[kat)i,j i (at)i,j] - 75% Py 3 - P11 9
(25)
- _ 6t n+l n+l
=8y 4~ 28x Py, 3~ Pia,g? (26)
and
i N
n+l _ _n 1 ov.n ov St n+1 n+1
= vyt Eet @D ¢ D] - m TR T T L
(27)
=% 6t n+1 n+l
gt Bl et B s

Because the time derivatives involve products of the fluid 1
velocities, (26) and (28) are coupled, nonlinear algebraic
equations. Furthermore, the pressure field at the new time
level must be chosen so that the new velocities are divergence
free, that is

3 (vy 441 =~ V4,3

1
% (ui+1,j - ui,j) Rak 0 J (29)

n+l n+1l 1 n+1 n+1l A
y




This last relation leads to the following linear, elliptic

boundary value problem for the pressures

1 n+l n+l n+1l
prote [phi1,5 - 20003 + o301 4]

PRy | [ 1 pntl oo+l
8yj L8y, 1,341 P

e =1 n+l _n+l ]
By, Fig " Pia-v’

- & FE N oy L S
= 3t [5x (Wyp1,5 = 94,50 F 8y Vi, 341 Vi,j)] (34

The solution is advanced to the n+l st time step through the
following iterative scheme

1. The new velocities and pressures are set equal
to the previous values.

2. The tilda velocifies are computed using (25) -
(28).

3. The system of equations (30) is inverted to
obtain a better guess of the pressure.

4, Equations (26) and (28) are used to obtain
a better guess of the velocities

5. Steps (2), (3), and (4) are repeated until the
quantities do not change by some predetermined
amount.

The solution of (30) is obtained by decomposing and backsolving
the banded pressure matrix using the Cholesky method. The

manipulations are carried out by an especially efficient routine
developed by M. Vander Vorst of JAYCOR.

.

o




Stability of the solution requires that the time step does not j
exceed values imposed by the advection and diffusion terms. '

Sy
6x Byt B 2]
§t < min IUJ = “i,jl . T;;f%T 'y (6x)" , 3 (GYJ) ‘ (31) ,

Experience has shown that if 8t is taken to be one-quarter of
the maximum time step allowed, then at least three significant
figures are obtained in the velocity and pressure fields with

five iterations.




4. COMPARISON WITH LINEAR STABILITY THEORY

The linearized form of equations (13) - (15) have been studied
in detail, e.g., Wazzan, et al., (1968), Jordinson (1970), the
case of greatest interest being when U takes on the Blasius
profile. See also the reviews by Tani (1969) and Reshotko
(1976). Not only have detailed quantitative solutions been
obtained, but the predicted fluid dynamic behavior is in close
agreement with experimental observation of small disturbances
in the boundary layer of a flat plate. For example, see Ross,
et al., (1970). Comparison with LST offers then a meaningful
test of the numerical approach.

When the disturbances are periodic in space, the eigenfunctions
are characterized by the two parameters o and R. Figure 3 shows
the curve of neutral stability, that is those distrubances which
neither grow nor die out, as determined by Jordinson; points
inside the curve are unstable flows, those outside are stable.
Below the critical Reynolds number of 520, LST predicts that all
disturbances die out and thus that the boundary layer is
completely stable.

To compare with the predictions of LST a series of numerical
experiments were conducted. In each case the mesh consisted of
18 constant-sized cells in the horizontal, periodic direction
and 34 variably-sized cells in the vertical. The smallest
vertical cells were 0.18 wide, while above y = 2.08 the cells
expanded geometrically so that the top of the last cell was
almost 1008 from the solid boundary. Figure 1 shows the mesh
configuration up to y = 256. The top boundary appears to not
influence the results, since placing it further away led to
no change in the flow properties. The base flow was given a
small disturbance which was then allowed to evolve toward a
final state.

15
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The circles shown in Figure 3 represent the matrix of numerical

experiments conducted. The numbers indicate the logarithmic
energy change per period of oscillation

E(t+T)

6=2nT(t—)-—,

T = period of disturbance. (32)
This quantity has not yet reached a final value in all cases,
so the quoted value, taken at the end of a run, may change
slightly. Figure 4 shows the variation with time of the energy
for most of the runms.

Figure 5 compares the time variation of production and dissi-
pation for one case near the neutral curve, where

production = [ dx dy (- uv %% (33)
2 ! 3 2 2
dissipation = -Jfdx dy (uV©u + vVv) . (34)

The production is the rate at which energy is extracted from

the base flow, while dissipation is the rate at which it is lost
to heat. The rates should be equal for a neutral case. Since
the initial disturbance is not a pure eigenmode of the system,
and since neighboring modes die out slowly, the flow requires

a considerable time to settle into a single, pure motion. That
difference distinguishes a true initial value problem from the
eigenvalue problem posed by LST.

Since negative values in Figure 3 indicate damped motion and
positive values indicate growth, the results are not in conflict
with LST. In fact, when nearby pairs of numerical calculations,
one showing growth and the other decay, are used to interpolate
a neutral condition, the results agree with LST to within a few
percent for both the wavenumber and frequency, see Table 1.
Here, B is the dimensionless frequency of oscillation. The
numerical calculation appears to have correctly reproduced the
overall energy balance and time behavior in the flow.

17
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Next, details of the flow field were examined. Figure 6
shows the variation with time of the horizontal disturbance
velocity at a particular streamwise position and for various
distances from the wall. This format is analogous to the |
continuous output of a velocity probe and shows the experi-
mentally observed pattern (Schlichting, 1969, p.403) that the
amplitude grows with distance from the wall, reaches a peak,
suffers a phase reversal, and dies out. The calculated period
of oscillation is 93.79 while the theoretical value is 93.48.

Figures (7) and (8) compare the amplitude and phase variation
with distance from the wall found from a numerical calculation
and Jordinson's eigenfunction solution. The comparison shows
that the details of the flow are reproduced completely,
idcluding the subtle phase variations occurring in the flow near
the wall. The numerical calculation appears to have correctly
reproduced the flow details as well as the overall energy

balances.
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5. FINITE AMPLITUDE EFFECTS

The previous comparisons with linear stability theory suggest
that the behavior of small amplitude disturbances is being
correctly computed numerically. A series of calculations was
then performed to determine the effects of finite amplitude.

In each case the initial disturbance had the same spatial dis-
tribution but the maximum amplitude of u” was taken as 0.0001,
0.01, 0.03, and 0.1 of U,. The results show a trend conjectured
by nonlinear stability theories (Stewartson, 1975) that finite
amplitude effects can be destabilizing.

Figure 9 shows the variation of the total energy in the
disturbance flow in each case, normalized to the same initial
value. The case considered is R = 500, a = 0.30, a point in
the subecritical regime where LST predicts all disturbances to
die out. At the smallest amplitudes the disturbance dies out
at a rate consistant with LST. For u” = 0.03, however, the
decay has been noticeably decreased, while for u” = 0.1 the
disturbance is almost neutrally stable. Although a truly
unstable state was not achieved, the destabilizing effects
seem to be definite. A similar variation is seen for unstable
small amplitude modes: as they grow to finite amplitude the
rate of growth increases.

Figure 10 further illustrates the effects of finite amplitude,
by considering the integrated production and dissipation rates
for the case R = 500, o = 0.30. At small amplitudes dissipation
always exceeds production and the disturbance monotonically dies
out. At u” = 0.1, however, the production exceeds dissipation
during part of the oscillation, so that for some time it grows
and for some time it is damped. The damped periods are greater
so that the disturbance is dying out overall, but a balance is
almost being struck.
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The accuracy of finite difference techniques for large
amplitude phenomena is difficult to assess and so a detailed
investigation is probably not warranted at this time. Still,
the results, indicate that the numerical solution technique

used in this work may be a useful tool in studying finite
amplitude effects in the boundary layer.

28




6. CONCLUDING REMARKS

The finite-difference method presented here has been shown to

accurately reproduce analytical results concerning boundary

layer stability with a modest storage requirement (612 interior
cells) and modest computational time (typically 2 - 5 minutes
of CDC 7600 central processor time). This efficiency, coupled
with encouraging results in the nonlinear regime, makes the
approach an attractive candidate for studying the large
amplitude, three-dimensional motion that accompanies boundary-
layer transition.
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